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Quantitative Structure-Activity Relationships. 3.1 A Comparison of Different 
Free-Wilson Models 
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The Fujita-Ban model and the classical Free-Wilson model are shown to be linearly related: the de novo group 
contributions obtained by one model are linear transformations of those obtained by the other model. An example 
is given to illustrate this linear dependence. The Fujita-Ban model is characterized by a number of advantages 
as compared with the classical Free-Wilson model: no transformation of the structural matrix and no symmetry 
equations are necessary; all group contributions are based on an arbitrarily chosen reference compound, preferably 
the unsubstituted compound; the constant term, which is the theoretically predicted activity value of the reference 
compound, and the values of the group contributions are not markedly influenced by addition or elimination of 
a compound; the problem of linear dependence (the singularity problem) sometimes can be circumvented by preparation 
of a contracted matrix; if the unsubstituted compound is chosen as reference compound, the group contributions 
are numerically equivalent to Hansch-derived group contributions; therefore, the Hansen approach and the Fujita-Ban 
model can be combined to a mixed approach. Taking all these facts into consideration, the Fujita-Ban model is 
recommended as the most suitable approach for the calculation of de novo group contributions. 

The Free-Wilson model2 is a mathematical approach for 
the quantitative description of structure-activity rela­
tionships. It is based on the assumption that the biological 
activity of a molecule is the sum of the activity contrib­
utions of definite substructures, e.g., of the unsubstituted 
parent fragment (which is a hypothetical compound 
bearing no substituents, not even hydrogen) and the 
corresponding substituents. This additivity concept 
implies that the activity contributions of the parent 
fragment and of each substituent are constant, regardless 
of the structural variations in the rest of the molecule. 

The classical Free-Wilson model is expressed by eq 1, 

biological activity = SGyXy + n (1) 
(linear or log values) U 

in which n is the overall average of biological activity values 
and Gij is the activity contribution of the substituent Xi 
in position j (Xij = 1 if the substituent X, is in position 
j ; otherwise Xij = 0). 

Based on the Free-Wilson additivity concept, three 
different modifications of this model were used in the past: 
the classical Free-Wilson model (eq l),2 the Cammarata 
model (eq 2),3,4 and the Fujita-Ban model (eq 3)5 

biological activity = 2fl,-;-Xy + MH (2) 
(logarithmic values) '•' 

biological activity = SflyXy + /xu (3) 
(logarithmic values) " 

where a;; = group contribution of the substituent Xi in 
position j , based on the definition that all OH = 0; MH = 
biological activity of the unsubstituted compound (all Xij 
= H), observed value; and MO = biological activity of the 
unsubstituted compound (all Xij = H), theoretically 
predicted value. 

Comparison of the Different Free-Wilson Models. 
Comparing the Free-Wilson models and the Hansch 
approach, it was stated in a recently published paper6 that 
the Fujita-Ban modification is a linear transformation of 
the classical Free-Wilson model, but no mathematical 
evidence was given for this statement. 

To provide this evidence and to clear up the relation­
ships between the different Free-Wilson models, it is 
necessary to go back to the origin and to develop the 
models step by step. For a group of compounds with 
substituents Ai, Bj, ... in different positions p, q, ... first 
a structural matrix can be prepared. The structural 
matrix for a group of iV,iV-dimethyl-2-bromophenethyl-

A = A„ A2, A, A, 
B — B t, B2, B3, ..., Bi 

amines7 is given in Table I; Ai and Bj are used for the meta 
and para substituents instead of X and Y to avoid con­
fusions with the dependent variables y (note that the meta 
and para labels are reversed in Table I of ref 3b). Although 
it is possible to come to the same results using a theoretical 
example, it is more descriptive to use a real-life example; 
all aspects of Free-Wilson analysis can be demonstrated 
with this well-analyzed3b'6'8'9 example (all conclusions 
drawn from this example are valid likewise for other 
examples, especially for compounds with more sites of 
substitution). 

If the Free-Wilson additivity concept is applied to the 
compounds of Table I, a set of 22 equations of the general 
form of eq 4 results for the biological activity y>k,i of every 
compound AkBi. In eq 4 the a\, a<i, ..., a, and fa, fa, .... 

Vfe,i=afe+0,+ 7 (4) 

fa are the group contributions (i.e., the G( and a; values 
of eq 1-3) of the substituents A\, A% ..., Ai and B\, B2,..., 
Bj and 7 is the biological activity value of the parent 
fragment. Since the yk,i values are observed values in­
cluding an experimental error tk,i, this set of equations 
must be solved by linear multiple regression analysis; a\, 
«2,..., ai and fa, fa,..., fa are now regression coefficients, 
A\, A2, ..., Ai and B\, B2,..., Bj are the independent var­
iables, and 7 is the intercept. 

However, the matrix given in Table I cannot be solved 
in its original form due to a linear dependence of the Ai, 
Bj,... columns of each structural matrix (although there 
are no linear dependences of the type described by 
Craig10): for each row of a structural matrix the sums of 
all Ai, all Bj, ... are equal to one (eq 5). This linear de-

At +A2 + ... +Ai=Bl + B2 + ... +Bj = ... = l (5) 

pendence is evident because for every site of substitution 
there is one and only one substituent (including H). Due 
to this linear dependence of the A;, Bj,... columns, every 
structural matrix is singular and, therefore, has an infinite 
number of solutions of the general form (ca and cj, are 
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Table I. Adrenergic Blocking Potencies of Ar,JV-Dimethyl-2-bromophenethylamines. 
Activity Values (Antagonism vs. Adrenaline in the Rat) 

Structural Matrix and Biological 

Compd 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Sums 
(n= 22) 

Ax 
(H) 

1 
1 
1 
1 
1 

1 

6 
(p.) 

A2 
(F) 

1 

1 
(p2) 

[ 

Meta substituents 

A3 
(CI) 

1 

1 

1 

1 

4 
(P3) 

At 

(Br) 

1 

1 

1 

1 

1 

5 
GO 

A 

•-t 
A5 

(I) 

1 

1 
(ps) 

Br 

^>— CHCH 2N 

A6 
<CH,) 

1 

1 

1 

1 
1 

5 
(P.) 

ft 
(H) 

1 
1 
1 
1 
1 

1 

6 
(9.) 

/ C H 3 

^ C H 3 

B2 

(F) 

1 

1 
1 
1 

4 
(«,) 

Para substituents 

ft 
(CI) 

1 

1 
1 
1 

4 
(93) 

ft 
(Br) 

1 

1 
1 
1 

4 
(94) 

ft 
(I) 

1 

1 
(9s) 

B6 

(CH3) 

1 

1 
1 

3 
( 9 J 

Log 1/C 
obsd 

8.16 
8.68 
8.89 
9.25 
9.30 
7.52 
8.16 
8.30 
8.40 
8.46 
8.19 
8.57 
8.82 
8.89 
8.92 
8.96 
9.00 
9.35 
9.22 
9.30 
9.52 
7.46 

191.32 
( £ * ) 

constants with arbitrary values; only two sites of substi­
tution are considered) 

tfi=a,-c0 ft=ft-cb 

tf2=a2-ca ft=ft-cb 

bj = Pj-cb 

H = y + ca+cb 

These equations interrelate any two different solutions ai, 
02, ..., a,-, 61, 62 bj, fi and ai, 012 a;, ft, ft ft, 7, 
respectively; ca and cb behave like additional unknowns 
which make a definite solution impossible. The assignment 
of arbitrary numbers to ca and c& does not solve this 
problem; ca and Cb must be eliminated in any other way. 

One possible way to do this is to define ca by an a, term 
and cb by a ft term, e.g., ca = cci and Cb = ft. Substitution 
of these arbitrary assignments into the general, indefinite 
solution gives the following linear transformed values. 

because ai = ft = 0. Due to this fact the calculated bi­
ological activity value of the unsubstituted compound 
(compound 22, A\ = B\ = H) is identical with the intercept 
n (eq 7). This new matrix is a Fujita-Ban matrix, based 

yH(obsd) = 11 + eH; ^H(calcd)=M (7) 

ax =0 
a2=Q.2~ en 

b:=0 
2>2=ft~ft 

"ft fli = o: ! -a i &;=(3;-
M = 7 + a! +ft 

A new set of equations (eq 6) results if these linear 
transformed values are used to define the biological activity 
values yk,i. From this set of equations a new matrix (Table 

yk,i=ak+b,+iJL (6) 

II) results which corresponds to the original structural 
matrix (Table I), the only difference being the elimination 
of the Ai and B\ columns; these columns are suppressed 

on the arbitrary assumption that all OH (in this case a\ and 
61) are zero. 

From the Fujita-Ban matrix given in Table II, the 
regression coefficients a2-ae and 62-66 ar»d the intercept 
n can be calculated by standard programs of linear multiple 
regression analysis (for results see Tables V-VII). 

Another possible way to eliminate ca and Cb would be 
the arbitrary assignment ca = ot2 and Cb = /3s, which leads 
to a2 = 0 and 65 = 0. Another matrix results from this 
assumption, now lacking the A2 and £5 columns (the 
matrix is not given here because the transformation is 
evident from the foregoing example). Since all group 
contributions calculated from this matrix are based on 02 
= 65 = 0, n is now the calculated biological activity value 
of a reference compound with A2 and B5 as substituents; 
all ai and bj values are based on this new reference 
compound (it does not matter if this A2B5 compound is 
not included in the original structural matrix per se). This 
modification is in all respects equivalent to the Fujita-Ban 
model. 

Out of a large number of different arbitrary assignments 
for ca and c& leading to different matrices (e.g., ca = a\ + 
ct2 - az leads to 03 = a\ + 02; or ca = 0.4 a\ + 0.6 0:2 leads 
to a\ = -1.5 02, etc.), only two special cases will be con­
sidered. First, the arbitrary assignment can be made that 

ca=-(ai + a 2 +••• +a,-)=a 
1 

(8) 

(9) 
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Table II. Fujita-Ban Matrix (a, = bl = 0) for the Compounds of Table P 

Compd 
no. 

r-l 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Sums 
( n = 22) 

A2 
(F) 

1 

1 
(p2) 

Meta subs t i tuents 

A 3 
(CI) 

1 

1 

1 

1 

4 
(p , ) 

A . 
(Br) 

1 

1 

1 

1 

1 

5 
0»4) 

A 5 

(I) 

1 

1 
(Ps) 

A 6 

(CH3) 

1 

1 

1 

1 
1 

5 
(P.) 

Ba 
(F) 

1 

1 
1 
1 

4 
(<?;) 

Para subst i tuents 

B> 
(CI) 

1 

1 
1 
1 

4 

(93) 

B, 
(Br) 

1 

1 
1 
1 

4 

(94) 

B, 
(I) 

1 

1 
( « s ) 

B, 
(CH,) 

1 

1 
1 

3 
(9 . ) 

Log 1IC 
obsd 

8.16 
8.68 
8.89 
9.25 
9.30 
7.52 
8.16 
8.30 
8.40 
8.46 
8.19 
8.57 
8.82 
8.89 
8.92 
8.96 
9.00 
9.35 
9.22 
9.30 
9.52 
7.46 

191.32 
( s y ) 

0 For better readability all zeros are deleted from the matrix. 

Table III. Matrix for the Compounds of Table I, Based on the Arbitrary Assumptions That a, 
(Derived from Eq 10) and bi=-b1- b3- b„ - b,-b6 (Derived from Eq l l ) a 

Compd 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Sums 
(n = 22) 

A2 
(F) 

- 1 
- 1 
- 1 
- 1 
- 1 

1 

- 1 

- 5 

Meta subs t i tuents 

A , 
(CI) 

- 1 
- 1 
- 1 
- 1 
- 1 

1 

1 

1 

1 

- 1 

- 2 

A, 
(Br) 

- 1 
- 1 
- 1 
- 1 
- 1 

1 

1 

1 

1 

1 
- 1 

- 1 
(Pi - Pi) 

A, 
(I) 

- 1 
- 1 
- 1 
- 1 
- 1 

1 

- 1 

- 5 

A& 

(CH,) 

- 1 
- 1 
- 1 
- 1 
- 1 

1 

1 

1 

1 
1 

- 1 

- 1 

B2 
(F) 

1 

- 1 
- 1 
- 1 
- 1 
- 1 

1 
1 
1 

- 1 

- 2 

Para subst i tuents 

Bs 
(CI) 

1 

- 1 
- 1 
- I 
- 1 
- 1 

1 
1 
1 

- 1 

- 2 

Bt 
(Br) 

1 

- 1 
- 1 
- 1 
- 1 
- 1 

1 
1 
1 

- 1 

- 2 
(Qj - 1I) 

B, 
(I) 

1 

- 1 
- 1 
- 1 
- 1 
- 1 

- 1 

- 5 

B, 
(CH,) 

1 
- 1 
- 1 
- 1 
- 1 
- 1 

1 
1 
1 

- 3 

Log lie 
obsd 

8.16 
8.68 
8.89 
9.25 
9.30 
7.52 
8.16 
8.30 
8.40 
8.46 
8.19 
8.57 
8.82 
8.89 
8.92 
8.96 
9.00 
9.35 
9.22 
9.30 
9.52 
7.46 

191.32 
(*y) 

a For better readability all zeros are deleted from the matrix. 

which leads to eq 10 and 11. 

a 1 + a2 + ••• + at =ax + a2 + ... + a,- - ia = 0 (10) 

bx +b2 + ... +fy=01+02 + ... +0 , - /0 =0 (11) 

From eq 10 and 11 any at and bj can be defined as a 
function of all other a and b values, e.g. 
fli = - a 2 - a . , - ...-a,- (12) 

b^-bz-bi- ...~bj (13) 

From eq 12 and 13 a matrix (Table III) results, which is 

similar but not identical with a classical Free-Wilson 
matrix. Despite this similarity the statement made by 
Schaad et a l . u that eq 10 and 11 (eq 4 of ref 11) are 
identical with the classical Free-Wilson symmetry 
equations is incorrect (only in the special case that all p; 
are identical and all qj are identical, the classical Free-
Wilson symmetry equations take the form of eq 10 and 11, 
see below). 

Secondly, an even more complex arbitrary assignment 
must be considered to come to the original Free-Wilson 
model. If all equations derived from a structural matrix 
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Table IV. Free-Wilson Matrix for the Compounds of Table I (Derived from Symmetry Eq 21 and 22)a 

Compd 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Sums 
(n= 22) 

A2 

(F) 

- ' / . 
- 7 e 
- ' / . 
- ' / . 
- ' / . 

1 

- ' /« 
0 

Meta substituents 

A, 
(CI) 

- 2 / 3 
- 2 / 3 
- 2 / 3 
- 2 / 3 
- 2 / 3 

1 

1 

1 

1 

~2/3 

0 
(p« 

^ 4 

(Br) 

- 5 / „ 
- 5 / e 

- 5 / e 

" 5 / e 

~5/6 

1 

1 

1 

1 

1 
- s / 6 

0 
- Prp 

As 

(I) 
— 16 

~ lb 

~ / 6 

~~ lb 

~ / 6 

1 

- ' /« 
0 

/P.) 

A6 
(CH,) 

- 5 / e 
- s/^ 

_ , / 6 

~" 7 6 

- 7 e 

1 

1 

1 

1 
1 

- 5 / e 

0 

B2 
(F) 

1 

- 2 / 3 
- 2 / 3 
- 2 / 3 
- 2 / 3 

- 2 / 3 
1 
1 
1 

- 2 / 3 

0 

Para substituents 

B3 
(CI) 

1 

- 2 / 3 
- 2 / 3 

- 2 / 3 
- 2 / 3 

- 2 / 3 

1 
1 
1 

- 2 / 3 

0 
toy 

B< 
(Br) 

1 

- 2 / 3 
- 2 / 3 
- 2 / 3 

-73 
- 2 / 3 

l 
l 
l 

- 2 / 3 

0 
- < ? . 

B5 

(I) 

1 

- ' / « 
- ' / . 
- ' / . 
- ' / « 
" ' / 6 

" ' / 6 

0 
<?;/<? i ) 

£ 6 
(CH,) 

1 
~ / 2 

~~ / 2 

/ 2 

"~ / 2 

~~ / 2 

1 
1 

- ' /> 
0 

Log 1/C 
obsd 

8.16 
8.68 
8.89 
9.25 
9.30 
7.52 
8.16 
8.30 
8.40 
8.46 
8.19 
8.57 
8.82 
8.89 
8.92 
8.96 
9.00 
9.35 
9.22 
9.30 
9.52 
7.46 

191.32 
( sy) 

a For better readability all zeros are deleted from the matrix. 

(see Table I and eq 4) are added, eq 14 results (pi, qj = 
the number of times each substituent A,, Bj is present in 
the matrix; note tha t p i + P2 + ... + Pi = <?i + <?2 + — + 
qj = n). 

n 
Zyk = plai + p2a2 + - +P,-a,- + qi^ + q2(32 

K=l 
+ ... + q,j3y + n 7 = 2p,a, + 2<?,-ft- + « 7 (14) 

From eq 14 a further arbitrary assumption can be derived 
to eliminate ca and Cb 

Equation 20 is the explanation for the fact that in the 
original Free-Wilson model, the intercept /u is the overall 
average of biological activity values y. 

If a i and 61 are defined by symmetry eq 21 and 22, a 
Free-Wilson matrix results for the compounds of Table 
I (Table IV; instructions for the preparation of a F ree -
Wilson matrix from the structural matrix and the cor­
responding symmetry equations are given in ref 10 and 12). 

1 1 

6a1 + a2 + 4a 3 + 5a4 + a5 + 5a6 = 0 

661 + 4b2 + 4b3 + 4Z>4 +bs + 3b6=0 

(21) 

(22) 
ca= - Xpidi = p^ and cb=- Zqfij = qfa 

n n 

which leads to 

Pifl, + p2a2 + ... + Pfii = Xpfii =pi(ui - PM) 

+ P2(a2 ~ P A O + - + Pit* -Wi) = Sp.-a,-

- (Pi + Pi + .- + Pijplai = Sp,-a,- - npiUi = 0 

and likewise 

Zpiat = 0 (eq 15) and Iqjbj = 0 (eq 16) are the well-
known Free-Wilson "symmetry equations" for every site 
of substitution, from which any a, and bj can be defined 
as a weighted function of all other a and b values, e.g. 

„ _ P2 P, Pi 
fli - - — -a2 a3 - ... a,-

Pi Pi Pi 

(15) 

(16) 

* i 
<7i 

q 3 h 

<7i 

(17) 

(18) 

Since n = y + ca + cb = y + Pi<xi + qj/3j, eq 14 can be 
transformed to eq 19 

n 
SVfe = 2p,-a,- + S^-fy + n(p - p,-a,- - <?;-fy) = n\i (19) 

/c—1 

from which \i can be calculated (eq 20). 

\x = Xy/n =y (20) 

If not ay and bi but 02 and 65 are defined by the other 
a and 6 values, another Free-Wilson matrix results, now 
lacking the 02 and 65 columns (the corresponding matrix 
is not presented here). 

These theoretical considerations demonstrate tha t the 
definitions used in Fujita-Ban and Free-Wilson analysis 
are only facilities to get a definite solution and that all 
solutions are linear transformations of each other solution. 
For practical proof a, and bj values were calculated for the 
compounds of Table I by six different analyses, based on 
four different arbitrary assignments. 

(I) a Fujita-Ban analysis (matrix given in Table II) 

0i =0,bi = 0 

(II) a Fujita-Ban type analysis (no matrix given) 

a2= 0 , 6 5 = 0 

(III) an analysis based on the arbitrary restrictions, eq 10 
and 11 (matrix given in Table III) 

ax = -a2 - a3 - a4 - as- a6 (derived from eq 10) 

bi = -b2 - b3- 64 - bs- b6 (derived from eq 11) 

(IV) an analysis based on the same arbitrary restrictions 
(no matrix given) 
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Table V. Group Contributions for the Compounds of Table I, Derived by the Different Analyses I-VI (Group 
Contributions Derived by the Cammarata Model and the Hansch Approach Are Given for Comparison) 

Group contribns, 
statistical 

parameters 

Meta subst 
fl,(H) 
aa(F)« 
a, (CI) 
a4 (Br) 
"s(iy 
a6(CH3) 

Para subst 
b , (H) 
M F ) 
MCl) 
&, (Br) 
bAiy 
MCH,) 

Intercept ju 

Correlation 
coeff r 

Std dev s 

Fujita-
ld 

0.000 
-0 .301 

0.207 
0.434 
0.579 
0.454 

0.000 
0.340 
0.768 
1.020 
1.429 
1.256 
7.821 

0.969 

0.194 

Ban models 
II 

0.301 
0.000 
0.508 
0.735 
0.880 
0.755 

-1.429 
-1.089 
-0.661 
-0.409 

0.000 
-0 .173 

8.949 

0.969 

0.194 

Arbitrary 
model," 
III,e IV 

-0.229 
-0.530 
-0.022 

0.205 
0.350 
0.225 

-0.802 
-0.462 
-0.035 

0.218 
0.627 
0.454 
8.852 

0.969 

0.194 

Free-Wilson 
model,6 

V / VI 

-0.252 
-0 .553 
-0.045 

0.182 
0.327 
0.202 

-0 .623 
-0.283 

0.144 
0.397 
0.806 
0.633 
8.696 

0.969 

0.194 

Cammarata 

Values 
from ref 3b 

0.00 
0.06 
0.52 
1.01 
0.84 
0.76 

0.00 
0.40 
0.82 
1.08 
1.79 
1.32 
7.46 

>h i 

0.324' 

model 

Recalcd 
values 

0.00 
0.06 
0.40 
0.61 
0.94 
0.63 

0.00 
0.56 
0.99 
1.24 
1.79 
1.50 
7.46 

h 

0.247 

Hansch-
derived group 

contribnc 

0.00 
-0 .21 

0.26 
0.40 
0.62 
0:49 

0.00 
0.33 
0.72 
1.07 
1.41 
1.28 
7.80 

0.966 

0.164 

° Identical values were obtained from analyses III and IV. b Identical values were obtained from analyses V and VI. 
c Calculated from eq 23 and 24; compare ref 6 and 9. d Matrix given in Table II. e Matrix given in Table III. f Matrix 
given in Table IV. g Single point determinations. h No meaningful r values_can be given because different formulas lead to 
different r values (r values > 1 are obtained if r2 = S t y l e d - y )2 /£(yo b s d ~ y Y IS u s e d for the calculation of r). ' s value 
calculated from the log 1/C values given by Cammarata (we could not reproduce the values r = 0.911 and s = 0.214 
published by Cammarata3b). 

a2 =~d\ ~ tf3 ~ a.\ - as~ a6 (derived from eq 10) 

b5 =-b{ - b2 - b-„ - b4 - b6 (derived from eq 11) 

(V) a Free-Wilson analysis I (matrix given in Table IV) 

ax =-'/6tf2 ~ 2/3fl.-, - sUaA - Vefls _ sUab (derived 

from eq 21) 

by ='2hb2 - 2/3bj -2hb. - 'jbbs - 'lib,, (derived 

from eq 22) 

(VI) a Free-Wilson analysis II (no matrix given) 

a2 =-6fli - 4a3 - 5a4 - a5 - 5a6 (derived from eq 21) 

bs =-6bt - 4b2 ~ 4b3 - 4b.. - 3b6 (derived from eq 22) 

The results (a; and bj values, n values, correlation 
coefficients r, and standard deviations s) are given in Table 
V; all ai and bj values are given with three decimal places 
to minimize rounding errors (for practical purposes two 
decimal places are sufficient). Group contributions re­
sulting from the Cammarata model (eq 2) and Hansch-
derived group contributions are given for comparison; since 
the values given by Cammarata3b seem to be erroneous, 
recalculated values are given for comparison (for a dis­
cussion of the Cammarata model see below). The 
Hansch-derived group contributions were calculated by 
appropriate transformation6 (eq 23, 24) of an equation 
given by Unger and Hansch9 (eq 25). 

a,=0.837T;-0.92a+
; (23) 

bj = \.33TTj- \.S9o*j (24) 

log 1 /C = 0.83 (±0.27) 7im + 1.33 (±0.20) 7TP 

- 0.92 (±0.50) a+
m - 1.89 (±0.57) a+

p + 7.80 (25) 

«=22 , r = 0.966,s=0.164 

These Hansch-derived group contributions allow the 
direct comparison of Hansch analysis with the different 
modifications of Free-Wilson analysis. 

The group contributions derived by analyses I-VI (Table 
V) demonstrate the validity of the foregoing mathematical 
derivations: all different solutions are simple linear 
transformations. The a;, bj, and n values found with 
analyses II-VI can be transformed to the at, bj, and n 
values found with analysis I by subtraction of the cor­
responding d value from all a; values and the corre­
sponding b\ value from all bj values and by addition of the 
a\ and b\ values to the intercept M- All other linear 
transformations can be done in a similar manner. 

Since all these linear transformed solutions lead to the 
same set of calculated log 1/C values11 (Table VI), the 
question arises whether it is necessary to have different 
modifications of the Free-Wilson model and which 
modification is the most suitable for practical purposes. 
To answer this question the statistical parameters should 
be considered first; all six modifications I-VI give identical 
r, s, and F values (all F = 16.99), while the Cammarata 
modification gives a larger standard deviation (see Tables 
V and VI), indicating the better fit of the modifications 
I-VI. 

The Cammarata model34 (eq 2) differs from the Fuji-
ta-Ban model (eq 3) in only one respect: instead of the 
theoretically predicted activity value of the reference 
compound (= the unsubstituted compound, all Xij = H) 
the observed value is used as the constant term (=MH). TO 
demonstrate the differences among classical Free-Wilson 
analysis, the Fujita-Ban modification, and the Cammarata 
model, the normal equations for each model must be 
considered; in the case of a group of compounds with 
substituents Ai and Bj the normal equations are a set of 
(i + ;' -2) equations which are developed from the cor­
responding matrix (e.g., Tables II, III, or IV) for the 
calculation of the a; and bj values following the rules of 
the least-squares method (eq 26) (compare ref 13, p 14). 
In classical Free-Wilson analysis and in Fujita-Ban an-
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Table VI. Calculated Log 1/C Values and Deviations A between Observed and Calculated Log 1/C Values from Different 
Models (A = Log 1/C Calcd - Log 1/C Obsd; Deviations of ±0.01 May Occur Due to Rounding Errors). For Comparison of 
the Different Models, the Sums of the Squared Deviations £ A2, the Degrees of Freedom DF, and the Standard 
Deviations s Are Given 

Compd 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

I A ! 

DF 
s 

Log 1/C 
obsd 

8.16 
8.68 
8.89 
9.25 
9.30 
7.52 
8.16 
8.30 
8.40 
8.46 
8.19 
8.57 
8.82 
8.89 
8.92 
8.96 
9.00 
9.35 
9.22 
9.30 
9.52 
7.46 

Free-Wilson model, 
Fujita-Ban models 

(analyses 

Log 1/C 
calcd 

8.16 
8.59 
8.84 
9.25 
9.08 
7.52 
8.03 
8.26 
8.40 
8.28 
8.37 
8.60 
8.62 
8.80 
9.02 
9.04 
9.05 
9.28 
9.30 
9.53 
9.51 
7.82 

I-VF) 

A 

0.00 
-0 .09 
-0 .05 

0.00 
-0 .22 

0.00 
-0 .13 
-0 .04 

0.00 
-0 .18 

0.18 
0.03 

-0 .20 
-0 .09 

0.10 
0.08 
0.05 

-0.07 
0.08 
0.23 

-0 .01 
0.36 

0.41 
11 

0.194 

Cammarata model 

Values from ref 3b 

Log 1/C 
calcd 

7.86 
8.28 
8.54 
9.25 
8.78 
7.52 
7.98 
8.47 
8.40 
8.22 
8.38 
8.87 
8.62 
8.80 
9.29 
9.04 
9.06 
9.55 
9.30 
9.54 
9.79 
7.46 

° Identical log 1/C values were obtained from analyses I-VI. 

A 

-0 .30 
-0 .40 
-0 .35 

0.00 
-0 .52 

0.00 
-0 .18 

0.17 
0.00 

-0 .24 
0.19 
0.30 

-0 .20 
-0 .09 

0.37 
0.08 
0.06 
0.20 
0.08 
0.24 
0.27 
0.00 

1.26 
12 

0.324 

Recalcd values 

Log 1/C 
calcd 

8.02 
8.45 
8.70 
9.25 
8.96 
7.52 
7.86 
8.07 
8.40 
8.09 
8.42 
8.64 
8.66 
8.85 
9.06 
9.08 
9.10 
9.32 
9.34 
9.59 
9.57 
7.46 

6 Compare ref 9. 

A 

-0 .14 
-0 .23 
-0 .19 

0.00 
-0 .34 

0.00 
-0 .30 
-0 .23 

0.00 
-0 .37 

0.23 
0.07 

-0 .16 
-0 .04 

0.14 
0.12 
0.10 

-0 .03 
0.12 
0.29 
0.05 
0.00 

0.74 
12 

0.247 

Hansch model, values 
calcd from 

Log 1/C 
calcd 

8.13 
8.52 
8.87 
9.21 
9.08 
7.59 
8.06 
8.20 
8.42 
8.29 
8.39 
8.53 
8.62 
8.79 
8.93 
9.01 
9.14 
9.28 
9.36 
9.57 
9.48 
7.80 

e q 2 5 6 

A 

-0 .03 
-0 .16 
-0 .02 
-0 .04 
-0 .22 

0.07 
-0 .10 
-0 .10 

0.02 
-0 .17 

0.20 
-0 .04 
-0 .20 
-0 .10 

0.01 
0.05 
0.14 

-0 .07 
0.14 
0.27 

-0 .04 
0.34 

0.46 
17 

0.164 

a2[A2A2]+aAA2A3] + ... + ai[A2Ai] +b2[A2B2] + ... + bj[A2Bj] = [A2Y] 

a:[AiA2]+a3[AiA2} + ...+ai[AiAi]+b2[AiB2} + ...+bj[AiBj}=[A^Y] 

«2 [A(A2] + aMiA 3] + - + at [A^] + b2 [AtB2] + ... + bj [Aft] = [AtY] 
a2 [B2A2] + a, [B2A 3] + ... + at [B2AA + b2 [B2B2] + ... + bj [B2Bj] = [B2Y] 

a2 [BjA2] + a, [BjA3] + ... + at [BjA,] + b2 [BjB2] + ... + bj[BJBJ] = [BjY] (26) 

alysis the terms [A2A2], etc., are defined as 

[A2A2} = 2(A2-A2)
2 

[A2Ai]=[AiA2} = ?:(A2-A2){AiZAi) 

[A,B,] = [BjAt] = 2(A, -A,XB} - B,) 

[A2Y] = X(A2-A2)(y-y),etc. 

and the intercept ix is defined as 

(27) 

tx=y -a2A2 -aiA3 - ... -a^ - b2B2 - ... - bjBj (28) 

Equations 26-28 must be transformed appropriately if not 
the A\ and B\ columns but any other At and Bj columns 
are absent in the corresponding Free-Wilson or Fujita-Ban 
matrix (the normal equations presented by Schaad et al.11 

are algebraic transformations of eq 26-28 which lead to 
a Fujita-Ban solution). 

The normal eq 26 and the definitions of the [A2A2] ... 
terms given in eq 27 correspond to the common least-
squares calculation procedure used in linear multiple 
regression analysis. Due to the identity of the normal 
equations every Free-Wilson matrix and every Fujita-Ban 

matrix can be solved with standard programs of linear 
multiple regression analysis; it should be noted that the 
linear relationship of the solutions obtained from classical 
Free-Wilson analysis and Fujita-Ban analysis is based on 
this identity of the normal equations. 

However, there is another possible way to solve a 
Free-Wilson matrix; due to the symmetry restrictions all 
sums of the columns and therefore all A\, A% ..., A;, B\, 
...,Bj are zero (see Table IV). This special property of a 
Free-Wilson matrix leads to a simplification of the [A2A2] 
... terms and of eq 28. 

[A2A2] = 2L42
2; [A2At] = [A«i2] = ZA2-At 

[A tBj] = [BjA,] = S4 ,-Bj ;[A2Y] = -LA2(y-y) (29) 

M =y (30) 

If y is subtracted from all y,;, a least-squares calculation 
procedure for equations containing no intercept can be 
applied, leading to identical solutions. 

The calculation procedure of the Cammarata model 
cannot be reconstructed definitely because only two ex­
amples were presented; the first example33 is made up of 
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ten single point determinations (no degree of freedom), and 
the second example3b seems to be erroneous (compare 
Table V). From the definitions of the model one must 
assume that Cammarata eliminated the intercept by 
subtraction of yn (= the observed biological activity value 
of the unsubstituted compound; all Xij = H) from all yij 
values and that the resulting matrix, identical in all other 
respects with a Fujita-Ban matrix, was solved by the 
least-squares method for equations containing no intercept. 

However, this calculation procedure is based on the 
incorrect assumption that the observed activity value of 
the unsubstituted compound contains no experimental 
error; since each observed activity value yij includes an 
experimental error e;y, the observed activity value yu 
includes an error en- If this experimental activity value 
is used as the constant term ju, the error CH has different 
weight compared to all other errors tij. The basic equations 
of all different Free-Wilson modifications (eq 1-3) contain 
an intercept; therefore, the simplified calculation procedure 
(eq 29) for equations containing no intercept can only be 
applied in the special case that all sums of the columns 
in the corresponding matrix are zero (which is the case in 
the classical Free-Wilson model but not in the Cammarata 
model). If the group contributions of all hydrogen sub-
stituents are arbitrarily put to zero, which is the definition 
of the Fujita-Ban model and the Cammarata model, the 
intercept n is the theoretically predicted activity value of 
the unsubstituted compound (eq 7) and not the experi­
mental value. It should be noted that also in Hansch 
analysis the constant term is the theoretically predicted 
activity value of the unsubstituted compound, provided 
that all structural parameters 4>j are based on 4>u = 0 (e.g., 
•K or <T but not log P or Es). 

Due to this inappropriate calculation procedure used by 
Cammarata, the classical Free-Wilson model and the 
Fujita-Ban model always give better and more reliable 
results than the Cammarata model; only in the case of «H 
-* 0 the Cammarata model gives a comparable solution; 
if a compound with a substituent occurring only once in 
the structural matrix (a single point determination) is 
chosen as reference compound, the Cammarata model and 
the Fujita-Ban model give identical solutions because the 
corresponding error term is included in the single point 
derived group contribution (healed = yobsd for single point 
determinations). 

Going back to classical Free-Wilson analysis and Fu­
jita-Ban analysis, next the confidence limits and the t 
values of each a, and bj term found with the different 
modifications I-VI must be considered (Table VII). It 
is not surprising that the t values are meaningless (at and 
bj values significant in one analysis are not significant in 
another analysis and conversely); since all solutions are 
linear transformations and the t values are linearly pro­
portional to the a, and bj values, the t values are fortuitous 
values, dependent on the arbitrary assignment which was 
used as basis of the corresponding model. Somewhat more 
surprising is the fact that the confidence limits of the 
Fujita-Ban-derived group contributions seem to be larger 
than the confidence limits derived by classical Free-Wilson 
analysis (see Table VII). However, this difference comes 
only from the "distribution" of the uncertainty of the 
reference group contribution to the other group con­
tributions in the Fujita-Ban model; in analysis I the 
confidence limits of oi and bi (reference substituents) are 
zero; therefore, the confidence limits of the residual group 
contributions include the uncertainty of the corresponding 
group contribution and the uncertainty of the reference 
group contribution; in analysis II all group contributions 

Table VII. Confidence Limits and t Values for the Group 
Contributions Derived with the Different Analyses I-VI 

Group 
contr ibns 

at (Pi), 
bj (Qj) 

a, (6) 

M l ) 

a, (4) 

0 4 ( 5 ) 

M D 

a „ ( 5 ) 

b. (6) 

M4) 

M4) 

M4) 

M D 

M3) 

Confidence limits (t values) for the 
group contr ibns derived with analyses 

I 

0 .00 c 

(...) 
±0.50 

(1.31) 
±0.29 

(1 .56) 
±0.27 

(3.55) 
±0.50 

(2.52) 
-0.21 

(3.71) 
0 .00 c 

(-) 
±0.30 

(2.48) 
±0.30 

(5.61) 
±0.30 

(7 .45) 
±0.50 

(6.23) 
±0.33 

(8.35) 

II 

±0.50 
(1 .31) 

0 .00 c 

( - ) 
±0.51 

(2.19) 
±0.50 

(3 .21) 
±0.60 

(3 .21) 
±0.50 

(3 .29) 
±0.50 

(6.23) 
±0.50 

(4.75) 
±0.50 

(2.88) 
±0.50 

(1 .78) 
0 .00 c 

(-) 
±0.52 

(0.74) 

III, IV a 

->0.21d 

(2 .42) 
±0 .39 e 

(3.00) 
±0.22 

(0.22) 
±0.21 

(2.18) 
±0.39 

(1.98) 
±0.21 

(2 .39) 
= 0 . 2 1 d 

(8.50) 
±0.21 

(4.90) 
±0.21 

(0.37) 
±0.21 

(2 .31) 
±0 .39 e 

(3.55) 
±0.23 

(4.28) 

V. VI b 

±0.16' ' 
(3 .46) 

±0.45* 
(2.70) 

0.20 
(0 .50) 

±0.17 
(2.35) 

±0.45 
(1.59) 

±0.17 
(2 .61) 

±0.17^ 
(7.89) 

±0.20 
(3.18) 

±0.20 
(1.62) 

t 0 . 2 0 
(4 .46) 

±0 .45 g 

(3.98) 
±0.24 

(5.89) 
a Identical values were obtained from analyses III and 

IV. b Identical values were obtained from analyses V and 
VI. c By definition. d From analysis IV only. e From 
analysis III only. ^ From analysis VI only. e From 
analysis V only. 

are based on two single point determinations (a-i and 65) 
which lead to confidence limits for the other group con­
tributions that are even larger than the confidence limits 
obtained by analysis I. It is not strictly correct but very 
descriptive to imagine that in analysis I the uncertainties 
of the single point derived group contributions 02, a», and 
65 are only in the corresponding confidence limits, while 
in the case of analysis II the uncertainties resulting from 
the single points a<i and b-a are in all confidence limits 
because the confidence limits of ao and 65 were forced to 
zero by definition. 

For that reason it is evident that only well-represented 
substituents should be taken as reference substituents in 
Fujita-Ban analysis to minimize the confidence limits of 
the resulting group contributions. The most meaningful 
confidence limits seem to result from classical Free-Wilson 
analysis; in contrast to Hansch analysis the indicative value 
of the confidence limits is small in Free-Wilson analysis 
because the confidence limits are only a measure of the 
relative frequencies pi, qj,... of the substituents Ai, Bj,... 
(note that all statistical parameters should be interpreted 
with care because most log 1/C values used in quantitative 
structure-activity analyses are mean values obtained from 
a number of experiments; therefore, the total experimental 
error is not included in the regressions). 

Some problems arising from single point determinations 
have been discussed in the literature;10 an analysis based 
on a large number of single point determinations is not 
very reliable because every single point derived group 
contribution reflects the experimental error of one com­
pound. Nevertheless, there is no reason to exclude them 
from the analysis if there are not too much: if compounds 
4, 6, and 9 (leading to single point determinations for group 
contributions 02, as, and 65) are eliminated from Table II, 
the resulting group contributions 03, 04, a&, bz-bt, a n d &6 
and the intercept no are identical with those obtained from 
the original Fujita-Ban matrix; the statistical parameters 
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are not significantly influenced (n = 19, r = 0.958, s = 
0.194, F = 17.33). The situation is more complex in 
classical Free-Wilson analysis: different symmetry 
equations, a different matrix, and different group con­
tributions result from the elimination of compounds 4, 6, 
and 9; of course, these new group contributions are only 
a new linear transformation of the old values, based on the 
new intercept (the statistical parameters are identical with 
those obtained from the corresponding Fujita-Ban ana­
lysis). 

A further problem of classical Free-Wilson analysis was 
demonstrated by Craig10 and Purcell et al.;12 if two 
substituents A\ and B\ always occur together in a 
structural matrix (Craig used the term "singularities"), the 
corresponding group contributions cannot be separated 
because there are not as many independent equations as 
unknowns for these substituents. Craig pointed out that 
the use of standard programs of linear multiple regression 
analysis can force a solution which is only one possible 
solution out of an infinite number of solutions (this case 
is comparable to the linear dependences in each structural 
matrix); Craig recognized that the problem of "ill 
conditioning" described by Hudson et al.14 was only caused 
by linear dependences in their matrix (compounds 3-6; 
compare ref 10). The mathematical background of linear 
dependence was discussed by Schaad et al.11 

Purcell et al.12 gave the following example. 

A.B.C, A2B2C, A3B3Ci A2B3C, A3B2C1 
A,BlC2 A2B2C2 A3B3C2 A2B3C2 A3B2C2 
A.B.C, A2B2C3 A3B3C3 A2B3C3 A3B2C3 

A set of 15 compounds with different substituents A, B, 
and C gives after appropriate transformation a Free-
Wilson matrix corresponding to a system of 15 equations 
with six unknowns. Dependent on the computer program 
used for regression analysis, no solution or a meaningless 
solution will result for the group contributions m and 6i. 
While the compounds A\B\Ci, A1B1C2, and A1B1C3 must 
be eliminated in classical Free-Wilson analysis to get a 
reliable result, this needs not to be done in Fujita-Ban 
analysis; if, e.g., A% B2, and C% are taken as reference 
substituents (02 = 62 = C2 = 0), the substitution A\B\ can 
be regarded like a single substituent D; the resulting group 
contribution d corresponds to the group contribution of 
the A\B\ substitution, based on the A2B2 substitution. 
This combination of two inseparable group contributions 
leads to the following contracted Fujita-Ban matrix. 

compd 

AlBlCl 

A.B.C, 
A,B,C3 
A2B2C, 
A2B2C2 
A2B2C3 
A3B3C, 

D 

1 
1 
1 
0 
0 
0 
0 

c\ 
1 
0 
0 
1 
0 
0 
1 

A3 

0 
0 
0 
0 
0 
0 
1 

B3 

0 
0 
0 
0 
0 
0 
1 

c3 
0 
0 
1 
0 
0 
1 
0 

Complex linear dependences can arise in an unbalanced 
group of compounds: in a group of compounds A;Bj 

AlBl A2B, A3B, A4Bt A3B, A6Bt 
A,B2 A2B2 A3B2 AABS ASBS A6BS 
A,B3 A2B3 A3B3 AtB6 ASB6 A6B6 

the substituents A1-A3 always occur together with B1-B3 
and the substituents A4-A6 always occur together with 
B^-Be- This corresponds to two linear dependences A\ + 
A2 + A3 = Bi + B2 + B3 and A4 + A5 + A6 = B4 + B5 + 
B& in the structural matrix. Due to these linear depen­
dences Free-Wilson analysis and Fujita-Ban analysis can 

only be applied to the first nine compounds and to the 
second nine compounds separately but not to the complete 
group of compounds because unreliable solutions will result 
for the group contributions of those substituents which are 
linearly dependent in the corresponding matrix (if, e.g., 
the substituents Ai and B4 are taken as reference sub­
stituents, the columns AA-A§ and B1-B3 are linearly de­
pendent in the resulting Fujita-Ban matrix: A4 + A5 + 
Ae + Bi + B2 + B3 = 1). 

Addition of a compound A1B4 or A3B5 to the given 
example eliminates the problem of linear dependence, but 
a new problem arises: Free-Wilson analysis or Fujita-Ban 
analysis forces a solution where all group contributions are 
influenced by the experimental error of the activity value 
of the added compound. This example demonstrates that 
one should select the compounds for synthesis and sub­
sequent structure-activity analysis carefully. If grouping 
of substituents results from an unbalanced choice of 
compounds, unreliable solutions may be obtained from 
Free-Wilson or Fujita-Ban analysis. 

The most important disadvantage of Free-Wilson an­
alysis and Fujita-Ban analysis is the usually high number 
of variables needed to describe all substituents. In some 
cases this disadvantage can be circumvented by appro­
priate combination of substituents in one column (some 
of the following simplifications can only be applied in 
Fujita-Ban analysis, not in Free-Wilson analysis). 

(a) In symmetrically substituted compounds, e.g., or-
tho,ortho'- or meta,meta'-disubstituted benzenes, the 
corresponding substituent columns can be combined to one 
column; a coefficient of 2 is given to such symmetrically 
disubstituted compounds.6'11'15 If a substituent gives very 
similar group contributions in all positions of the benzene 
ring, all corresponding columns may be combined: 
coefficients of 2, 3, 4, and 5 are given to di-, tri-, tetra- and 
penta-substituted benzenes.11'16 

(b) In homologous series the group contributions of the 
-CH2- group can be assumed to be identical; if, e.g., the 
Cs compound is used as reference compound, coefficients 
of 2,4,6,... may be given to the C10, C12, C14,... compound. 

(c) Hansch et al.17 combined chemically different 
substituents in one column if these substituents had similar 
group contributions and eliminated columns if the cor­
responding group contributions were not significantly 
different from zero. To our opinion this extreme reduction 
of the number of variables is a dangerous procedure be­
cause of its arbitrariness (no sequential F test should be 
applied in Free-Wilson and Fujita-Ban analysis because 
also a group contribution not significantly different from 
zero is meaningful despite its influence on the other 
statistical parameters). 

(d) If for one definite region of the molecule a Hansch 
correlation can be obtained for the substituents, while 
substituents in another position of the molecule must be 
treated by Free-Wilson analysis, the Fujita-Ban model 
and the Hansch approach can be combined to a mixed 
approach,16'17 e.g., eq 31 (note that the Fujita-Ban model 

log llC = Ilai+k1n + k2o + n (31) 

was called the "modified Free-Wilson model" in ref 6 and 
16). In eq 31 2a; is a Free-Wilson part for the substituents 
Xi, kiir + k2c is a Hansch part for substituents Y/, and n 
is the theoretically predicted activity value of the un-
substituted parent compound (X = Y = H) or of an ar­
bitrarily chosen reference compound. Other forms of the 
mixed approach which are applicable in the case of 
nonadditivity of group contributions, e.g., nonlinear de­
pendence of biological activity from lipophilic character, 
have been discussed in ref 16. 
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Discussion 
The original Free-Wilson model is based on symmetry 

equations (originally called "restrictions"2). Although Free 
and Wilson gave an example which demonstrates that 
these restrictions are arbitrary assumptions and that the 
symmetry results only from the use of average values as 
reference values, these symmetry equations have led to 
some speculations: Craig10 stated that the basic as­
sumption of additivity of group contributions demands 
these symmetry equations; Franke and Oehme18 stated 
that the symmetry equations are meaningless if the log­
arithms of the biological activity values are used as activity 
parameters instead of the linear values. Nothing of that 
is correct; the symmetry equations are only one possible 
arbitrary assumption to get a definite solution of the 
matrix. Furthermore, the assumption that in classical 
Free-Wilson analysis the intercept n is identical with the 
biological activity of the parent fragment is not correct; 
M is the overall average of biological activity values and 
nothing else. 

Due to the specific properties of the Free-Wilson model, 
a simple calculation procedure for the a, and bj values 
results (compare eq 29 and 30); since this work is usually 
done by a computer with standard programs, this sim­
plification of the calculation procedure is of no real value. 
On the other hand, two disadvantages arise from the 
symmetry equations: if no special computer program is 
available which includes the transformation of the 
structural matrix to the Free-Wilson matrix, this trans­
formation must be done "by hand"; every elimination of 
a compound or addition of a new compound gives new 
symmetry equations and a new matrix; since the n term 
is the overall average and all a,:, bj,... values are based on 
this value, every addition or elimination of a compound 
causes a change of ti and therefore a change of all a,, bj, 
... values. This is a more serious disadvantage because such 
eliminations of one or more compounds are usually done 
to detect irregular values (outliers). 

The modification of the Free-Wilson model described 
by Fujita and Ban5 (eq 3) differs from the original model 
in three respects: first, all activity contributions are based 
on the arbitrary assumption that all an, bn, • •• are zero; 
secondly, as a consequence of this definition, the constant 
term /uo obtained by the least-squares method is the 
theoretically predicted activity value of the unsubstituted 
compound (all Xij = H; eq 7); thirdly, Fujita and Ban used 
the logarithms of the biological activity values instead of 
the linear values since the log of activity is considered to 
be a free-energy related parameter which is additive. In 
accordance with Hansch analysis (which is also based on 
the additivity concept in its nonparabolic form) only log 
values of biological activity should be used nowadays in 
Free-Wilson and Fujita-Ban analysis; the arguments given 
by Purcell and Clayton19 from a comparison of linear and 
antilog values are incompatible with the definition of the 
least-squares method (it should be noted that negative dose 
values or negative values of relative biological activities 
can result from the use of linear values). 

If for one or more definite sites of substitution no hy­
drogen substituent is included in the structural matrix, any 
other substituent may be taken as reference substituent;10 

in that case the constant term ^o is the theoretically 
predicted activity value of a compound bearing these 
reference substituents (compare analysis II, Table V); all 
group contributions are based on this reference compound. 
Due to the arbitrary choice of the reference compound, we 
cannot agree with the opinion of Fujita et al.20,21 that the 
Fujita-Ban model is only applicable if the unsubstituted 

compound is included. 
The definitions of the Fujita-Ban model lead to a 

number of important advantages. 
(1) No symmetry equations and no complex transfor­

mations of the structural matrix are necessary; the eli­
mination of one column for every site of substitution (the 
reference substituent columns) is the only change in going 
from the structural matrix (Table I) to a Fujita-Ban matrix 
(Table II). 

(2) The matrix is not changed by addition or elimination 
of one row (addition or elimination of a compound); if 
single point determinations are eliminated from the matrix, 
one row (the compound) and one column (the corre­
sponding substituent) are eliminated from the matrix. 

(3) The constant term po and all group contributions a;, 
bj, ... are not markedly influenced by the addition or el­
imination of a compound. If only single point determi­
nations are eliminated from the matrix, no changes occur 
in the ai, bj,... and no values (which is not the case in the 
original Free-Wilson model). 

(4) The set of a„ bj, ... and JXQ values is a simple linear 
transformation of the values obtained by classical Free-
Wilson analysis (see Table V). 

(5) The Fujita-Ban group contributions are directly 
comparable to Hansch-derived group contributions; if all 
Hansch-derived group contributions are calculated from 
structural parameters <j>j which are based on </>H = 0, and 
if the reference compound in the Fujita-Ban analysis is 
the unsubstituted compound, the group contributions are 
numerically equivalent6 (compare Table V; the group 
contributions derived from analysis I and the Hansch-
derived group contributions are nearly identical). Due to 
this numerical equivalence the Fujita-Ban model and the 
Hansch approach can be combined to a mixed approach 
which incorporates the elements of Free-Wilson analysis 
and Hansch analysis in one model. This mixed approach 
makes use of the advantages of each model and widens the 
applicability of Hansch and Free-Wilson analysis. 

(6) The problem of linear dependence which leads to 
unreliable results in classical Free-Wilson analysis 
sometimes can be circumvented in Fujita-Ban analysis by 
the preparation of a contracted matrix. 

From this comparison of the different Free-Wilson 
models the following statements and recommendations are 
derived: only the Fujita-Ban model should be used for 
the calculation of de novo group contributions; the cor­
responding matrix is easy to prepare and all group con­
tributions are based on an arbitrarily chosen reference 
compound, preferably the unsubstituted compound (all X,; 
= H). If the unsubstituted compound is used as reference 
compound, the resulting group contributions are directly 
comparable to Hansch-derived group contributions. In 
cases where no hydrogen-substituted compound is present, 
any well-represented substituents may be chosen as ref­
erence substituents. The group contributions obtained by 
classical Free-Wilson analysis are linear transformations 
of those obtained by Fujita-Ban analysis; however, the 
preparation of the matrix is more complex and all values 
change by addition or elimination of a single compound. 
A simple algorithm for Fujita-Ban analysis which allows 
the calculation of de novo group contributions without a 
computer will be presented in a forthcoming paper.22 
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Twenty-two structural derivatives of clonidine [2-(2,6-dichlorophenylimino)imidazolidine] have been synthesized 
and their main physicochemical parameters (log P, &RM, P-Ka) determined. Quantitative correlations between the 
peripheral a-mimetic action (pithed rats) and physicochemical parameters pointed out the critical role of the steric 
effect in the ortho positions. On the other hand, attempted quantitative correlations between physicochemical 
parameters and central hypotensive activity were unsuccessful. These results are discussed in the light of the postulated 
mechanism of action of clonidine. 

In view of our interest in the hypotensive agent clonidine 
[2-(2,6-dichlorophenylimino)imidazolidine],2 we describe 
here quantitative structure-activity relationships (QSAR) 
obtained by the Hansch method 3 in a series of phenyl-
iminoimidazolidines related to clonidine. 

Clonidine is a hypotensive agent widely used thera­
peutically. It is well known, however, that its overall action 
on arterial blood pressure is a resultant of peripheral and 
central effects.4 Peripheral effects are vasoconstrictive, 
whereas central effects are hypotensive. The central site 
of action is located in the medulla oblongata and probably 
more precisely in the obex5 or on the ventral surface of the 
brain stem.6 

The peripheral mechanism is explained by an a-sym-
pathomimetic action. The central mechanism may be 
similar but one cannot rule out the possibility that clo­
nidine acts by inhibiting adrenergic presynaptic receptors. 

Our work is devoted to the synthesis of compounds 
related to clonidine, to the determination of their phy­
sicochemical parameters (log P, pKa, ARM), and to their 
pharmacological evaluation. In particular we have mea­
sured the hypertensive effect in the pithed rat (peripheral 
action). Our aim was to determine the physicochemical 
parameters which correlate best with the biological activity. 

Synthes i s of 2-Aryl iminoimidazol idines . Aryl-
iminoimidazolidines were generally synthesized by the 
action of ethylenediamine on the S-methylisothiouronium 
salt derivative (Scheme I, path A) and less commonly from 
the phenyldichloro isocyanide derivative (Scheme I, path 
B). 
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Starting materials were generally commercially available. 
The 2,6-difluoroaniline was obtained according to the 
method of Burton and Roe.7 The 2,6-dimethyl-4-meth-
oxyaniline was synthesized by some useful modifications 
of the method of Saunders and Watson8 (see Scheme II). 

The use of sulfanilic acid instead of aniline facilitated 
the isolation of the 2,6-dimethyl-4-methoxyaniline. It is 
also worthwhile mentioning tha t the original catalytic 
high-pressure hydrogenation was replaced by a chemical 
reduction using sodium hydrosulfite. The main physi-


